In this paper, we propose a new traffic control method based on multiagent reinforcement learning and communication flow for autonomous vehicles and traffic lights. With the aim to ease traffic overload flow, traffic lights smartly tune the time of green light according to a crossroad situation. Beyond that, crossroad situation information can be transferred between traffic lights and autonomous vehicles. Due to the communication dispatch algorithm, autonomous vehicles can dynamically design new routes for avoiding traffic jams and traffic lights dynamically adjust to real-time traffic more efficiently. We demonstrate that our method outperforms the traditional traffic control method and provides high practicability in the future for autonomous vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Communicate with Traffic Lights and Vehicles Based on Multi-Agent Reinforcement Learning


    Beteiligte:
    Wu, Qiang (Autor:in) / Zhi, Peng (Autor:in) / Wei, Yongqiang (Autor:in) / Zhang, Liang (Autor:in) / Wu, Jianqing (Autor:in) / Zhou, Qingguo (Autor:in) / Zhou, Qiang (Autor:in) / Gao, Pengfei (Autor:in)


    Erscheinungsdatum :

    05.05.2021


    Format / Umfang :

    1528253 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimizing Traffic Lights with Multi-agent Deep Reinforcement Learning and V2X communication

    Hussain, Azhar / Wang, Tong / Jiahua, Cao | ArXiv | 2020

    Freier Zugriff

    Traffic Lights Dynamic Timing Algorithm Based on Reinforcement Learning

    Lu, Chenqing / Wen, Feng / Gen, Mitsuo | Springer Verlag | 2017


    traffic lights for vehicles

    YOON DONG KWON | Europäisches Patentamt | 2020

    Freier Zugriff


    Signal Synchronization of Traffic Lights Using Reinforcement Learning

    Aydin, Ilhan / Sevi, Mehmet / Gungoren, Gurbet et al. | IEEE | 2022