Massive multiple-input multiple-output (MIMO) is a promising technology for 5G systems and is expected to improve the performance of multi-user MIMO (MU-MIMO). When uplink (UL) channel estimation results are used for downlink (DL) MU-MIMO precoding, the UL channel estimation errors degrade the performance of DL MU-MIMO. To reduce the estimation errors, a channel estimation method using the channel sparsity in beam space has been studied. This method, which is called beam space channel estimation (BSCE) in this paper, can reduce the estimation errors by setting the channel estimates of non-dominant beams to zeros. However, when the directions of beams are not close to those of dominant paths, BSCE cannot reduce the estimation errors sufficiently. In this paper, we propose a BSCE using multiple discrete Fourier transform (DFT) matrices which form beams in mutually different directions to increase the probability that the directions of beams are close to those of dominant paths. We also propose a non-zero beam selection method to prevent the directions of nonzero beams from being limited to a specific angular range. Simulation results show that the proposed method using four DFT matrices improves cell throughput performance by 53% compared with not using BSCE and by 24% compared with the conventional BSCE when the signal-to-noise ratio (SNR) of the UL reference signal is 0 dB.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sparse Channel Estimation Using Multiple DFT Matrices for Massive MIMO Systems


    Beteiligte:
    Shikida, Jun (Autor:in) / Muraoka, Kazushi (Autor:in) / Ishii, Naoto (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    366542 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Massive MIMO Channel Estimation using few parameters in sparse propagation environments

    Callejas-Ramos, Alvaro / Sanchez-Fernandez, Matilde / Artiga, Xavier et al. | IEEE | 2024


    Performance Evaluation of Linear Beamforming Receiver for Large CoMP Sparse Massive MIMO Channel Matrices

    Ahmadian, Amir M. / Ganesan, Rakash Sivasiva / Zirwas, Wolfgang | IEEE | 2017


    Sparse Bayesian Learning Using Complex t-Prior for Massive Multi-User MIMO Channel Estimation

    Furuta, Kengo / Takahashi, Takumi / Ochiai, Hideki | IEEE | 2024


    Channel Estimation for FDD Massive MIMO OFDM Systems

    Hu, Die / He, Lianghua | IEEE | 2017


    Transformer-based Predictive Channel Estimation for mmWave Massive MIMO Systems

    Ju, Hyungyu / Jeong, Seokhyun / Lee, Byungju et al. | IEEE | 2024