We consider measurements from possibly zero-mean stochastic processes in a nonlinear filtering framework. This is a challenging problem, since it is only the second order properties of the measurements that bear information about the unknown state vector. The covariance function of the measurements can have both spatial and temporal correlation that depend on the state. Recently, a solution to this problem was presented for the case of Gaussian processes. We here extend the theory to Student's t processes. We illustrate the state observability by a simple but still realistic simulation example.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Non-linear filtering based on observations from Student's t processes


    Beteiligte:
    Saha, Saikat (Autor:in) / Orguner, Umut (Autor:in) / Gustafsson, Fredrik (Autor:in)


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    721044 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Non-linear filtering based on observations from Gaussian processes

    Gustafsson, F / Saha, S / Orguner, U | IEEE | 2011


    Upgrading from Gaussian Processes to Student’s-T Processes

    Tracey, Brendan D. / Wolpert, David | AIAA | 2018


    Upgrading from Gaussian Processes to Student's-T Processes (AIAA 2018-1659)

    Tracey, Brendan D. / Wolpert, David | British Library Conference Proceedings | 2018


    High Integrity Localization of Intelligent Vehicles with Student's t Filtering and Fault Exclusion

    Al Hage, Joelle / Salvatico, Nicolo / Bonnifait, Philippe | IEEE | 2023


    Robust student’s t based nonlinear filter and smoother

    Yulong Huang / Yonggang Zhang / Ning Li et al. | IEEE | 2016