In this article, we simulate an ensemble of cooperating, mobile sensing agents that implement the cyclic stochastic optimization (CSO) algorithm in an attempt to survey, track, and follow multiple targets. In the CSO algorithm proposed, each agent uses its sensed measurements, its shared information, and its predictions of other agents’ future motion to decide on its next action. This decision is selected to minimize a loss function that decreases as the uncertainty in the target state estimates decreases. Only noisy measurements of this loss function are available to each agent, and, in this study, each agent attempts to minimize this function by calculating its gradient. This article examines, via simulation-based experiments, the implications and applicability of CSO convergence in three dimensions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Three-Dimensional Swarming Using Cyclic Stochastic Optimization


    Beteiligte:


    Erscheinungsdatum :

    01.04.2022


    Format / Umfang :

    2163813 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    SWARMING FLIGHTS CONTROLLING METHOD AND SWARMING FLIGHTS CONTROLLING SYSTEM

    MOON SUNG TAE / KIM DO YOON / CHOI JOON MIN | Europäisches Patentamt | 2020

    Freier Zugriff


    Swarming UAS II

    M. Dabkowski / J. Cook / R. Kewley | NTIS | 2010