Global navigation satellite system (GNSS) positioning accuracy is degraded in urban canyons due to signal blockages and reflections, which is still a major challenge. Recently, using machine learning to improve the accuracy of GNSS positioning in urban areas has become a new trend. This article summarizes the works focused on GNSS multipath/non-light-of-sight (NLOS) mitigation using machine learning. The review of the studies is categorized based on the input features, algorithms, and outputs. The categorization shows that the received signal strength, elevation angle, and receiver correlator outputs from a single channel of satellite signal are the most popular input features. For the algorithm selection, the support vector machine and fully connected neural network are the algorithms most widely used. In terms of the outputs, most of the works made improvements in measurement status prediction, namely, LOS, multipath, and NLOS. Besides, this article also provides an open-source dataset with four scenarios for machine learning algorithms for the GNSS multipath/NLOS mitigation. Finally, the benchmarks are established based on the proposed dataset and the FCNN and least-squares estimation to enable performance evaluation in Kaggle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning in GNSS Multipath/NLOS Mitigation: Review and Benchmark


    Beteiligte:
    Xu, Penghui (Autor:in) / Zhang, Guohao (Autor:in) / Yang, Bo (Autor:in) / Hsu, Li-Ta (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2024


    Format / Umfang :

    1504250 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Framework for Graphical GNSS Multipath and NLOS Mitigation

    Xu, Penghui / Zhang, Guohao / Zhong, Yihan et al. | IEEE | 2024


    3D LiDAR Aided GNSS NLOS Mitigation in Urban Canyons

    Wen, Weisong Weisong / Hsu, Li-Ta | IEEE | 2022


    GNSS Multipath Mitigation using Antenna Motion

    Psiaki, Mark L | Online Contents | 2015


    NLOS-Multipath Effects on Pseudo-Range Estimation in Urban Canyons for GNSS Applications

    Ercek, R. / De Doncker, P. / Grenez, F. et al. | British Library Conference Proceedings | 2006


    Deep Neural Network Correlators for GNSS Multipath Mitigation

    Li, Haoqing / Borhani-Darian, Parisa / Wu, Peng et al. | IEEE | 2023