To enable autonomous driving, a semantic knowledge of the environment is unavoidable. We therefore introduce a multiclass classifier to determine the classes of an object relying solely on radar data. This is a challenging problem as objects of the same category have often a diverse appearance in radar data. As classification methods a random forest classifier and a deep convolutional neural network are evaluated. To get good results despite the limited training data available, we introduce a hybrid approach using an ensemble consisting of the two classifiers. Further we show that the accuracy can be improved significantly by allowing a lower detection rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Object classification in radar using ensemble methods


    Beteiligte:
    Lombacher, Jakob (Autor:in) / Hahn, Markus (Autor:in) / Dickmann, Jurgen (Autor:in) / Wohler, Christian (Autor:in)


    Erscheinungsdatum :

    01.03.2017


    Format / Umfang :

    4010773 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Buried object classification using holographic radar

    Windsor, C. / Capineri, L. / Bechtel, T.D. | Tema Archiv | 2012


    Channel Boosting Feature Ensemble for Radar-based Object Detection

    Azam, Shoaib / Munir, Farzeen / Jeon, Moongu | IEEE | 2021


    Radar object classification based on radar cross-section data

    ALFERDAOUS ALAZEM BADEEA FERDAOUS / WANG CHUANG | Europäisches Patentamt | 2025

    Freier Zugriff

    RADAR OBJECT CLASSIFICATION BASED ON RADAR CROSS-SECTION DATA

    ALFERDAOUS ALAZEM BADEEA / WANG CHUANG | Europäisches Patentamt | 2023

    Freier Zugriff

    RADAR OBJECT CLASSIFICATION BASED ON RADAR CROSS-SECTION DATA

    ALFERDAOUS ALAZEM BADEEA FERDAOUS / WANG CHUANG | Europäisches Patentamt | 2024

    Freier Zugriff