Population growth around the world has led to a challenging level of demand for transportation. Constructing new infrastructure is not always the first option due to spatial, financial, and environmental constrains. Public transit is often considered to be a more affordable and sustainable option, as one transit vehicle can carry significantly higher number of passengers compared to regular vehicles. In urban cores, a considerable portion of travel time is spent waiting at traffic signals. Transit Signal Priority (TSP) methods has emerged over the years to reduce transit delays at traffic signals. Traffic signals are often optimized for regular traffic and TSP systems are added to adjust the background signal timing plans to provide priority for transit vehicles. Therefore, these two modes seem to constantly fight for the green signal, and improving one’s travel time leads to deterioration of the other’s. In this research we introduce a new multimodal traffic signal controller that explicitly considers both regular and transit vehicles and optimizes the throughput of people rather than vehicles, irrespective of what mode they are on. For this purpose, we use deep reinforcement learning to develop and test a Multimodal iNtelligent Deep (MiND) traffic signal controller.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multimodal iNtelligent Deep (MiND) Traffic Signal Controller




    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    498794 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intelligent traffic signal controller

    SHAO GUIZHEN / WANG KUN / YU CHANGCUI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Intelligent traffic signal controller

    WANG PEIQING / LU QINGSONG / WEI HONGWEI et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Intelligent traffic signal controller

    MENG JINGLEI / WANG SONGHUI / YANG RUI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Intelligent traffic signal controller

    WANG WENGAO | Europäisches Patentamt | 2020

    Freier Zugriff

    Interactive intelligent traffic signal controller

    PANG XIAOGANG | Europäisches Patentamt | 2015

    Freier Zugriff