Prediction of the traffic information such as flow, density, speed, and travel time is important for traffic control systems, optimizing vehicle operations, and the individual driver. Prediction of future traffic information is a challenging problem due to many dynamic contributing factors. In this paper, macroscopic and kinetic traffic modeling approaches are investigated. We present a speed prediction algorithm, KTM-SP, based on gas-kinetic traffic modeling. Experimental results show that the proposed algorithm gave good prediction results on real traffic data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real time vehicle speed predition using gas-kinetic traffic modeling


    Beteiligte:
    Ruoqian Liu, (Autor:in) / Shen Xu, (Autor:in) / Jungme Park, (Autor:in) / Murphey, Y. L. (Autor:in) / Kristinsson, J. (Autor:in) / McGee, R. (Autor:in) / Ming Kuang, (Autor:in) / Phillips, T. (Autor:in)


    Erscheinungsdatum :

    01.04.2011


    Format / Umfang :

    368467 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Track Predition Based on CNN-GRU Neural Network

    Ju, Cong / Fu, Yuhui / Li, Chenghao | IEEE | 2023


    Real-Time Traffic Speed Variability Modeling and Prediction

    Shi, Guogang / Guo, Jianhua | ASCE | 2014


    Real-Time Dynamic Traffic Speed Control

    MITTAL ARCHAK / CHEN YIFAN / WINGFIELD ERIC H | Europäisches Patentamt | 2022

    Freier Zugriff

    Real-time dynamic traffic speed control

    MITTAL ARCHAK / CHEN YIFAN / WINGFIELD ERIC H | Europäisches Patentamt | 2022

    Freier Zugriff