Vision-based global localization without a prior location estimate is a fundamental task for safe and efficient vehicle navigation in GPS-denied environments. Cross-season localization, in which query and database images involve different seasons is one of the most challenging task scenarios, owing to appearance variations among seasons. Because of recent advances in deep convolutional neural networks (DCNs) and transfer learning techniques, the task can be solved accurately by training and fine-tuning a DCN-based visual place classifier. However, the direct implementation of this would require collecting and storing a large amount of visual experiences (i.e., training data) for every new season, which is impractical. The goal of our study is to suppress the space cost for long-term memory and to develop a constant cost framework for long-term global localization. Moreover, we formulate and consider the task of experience compression as a scheduling problem of how to choose the part of the previous season's experience that is to be replaced with the current season's experience, to achieve an optimal tradeoff between localization accuracy and training efficiency. Experimental results using the publicly available North Campus Long-Term autonomy dataset validate the efficacy of our proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Long-Term Vehicle Localization Using Compressed Visual Experiences


    Beteiligte:
    Naiming, Yang (Autor:in) / Kanji, Tanaka (Autor:in) / Yichu, Fang (Autor:in) / Xiaoxiao, Fei (Autor:in) / Kazunori, Inagami (Autor:in) / Yuuki, Ishikawa (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    1078888 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Map Management for Efficient Long-Term Visual Localization in Outdoor Environments

    Burki, Mathias / Dymczyk, Marcin / Gilitschenski, Igor et al. | IEEE | 2018


    LLama-SLAM: Learning High-Quality Visual Landmarks for Long-Term Mapping and Localization

    Luthardt, Stefan / Willert, Volker / Adamy, Jurgen | IEEE | 2018



    LONG-TERM VISUAL TRAILER TRACKER FOR VEHICLE-TRAILER ANGLE ESTIMATION

    LLANOS EDUARDO / IP JULIEN / CAMACHO RUIZ VICTOR MANUEL | Europäisches Patentamt | 2022

    Freier Zugriff

    LONG-TERM VISUAL TRAILER TRACKER FOR VEHICLE-TRAILER ANGLE ESTIMATION

    LLANOS EDUARDO / IP JULIEN / CAMACHO RUIZ VICTOR MANUEL | Europäisches Patentamt | 2024

    Freier Zugriff