Extended objects give rise to a varying number of noisy measurements from its reflection (scattering or feature) points. Due to imperfect detection, only some of the feature points are detected in each scan of input data, while false alarms can also be present. The optimal sequential Bayesian state estimator in the framework of random set theory is the Bernoulli filter for an extended target (BF-X). In this article, we formulate and derive the analog of the BF-X in the framework of possibility theory, where uncertainty is represented using possibility functions, rather than probability distributions. Possibility functions have the capacity to model partial (imprecise) probabilistic specifications, and thus, the main advantage of the proposed possibilistic BF-X is enhanced robustness in the absence of precise measurements or dynamic models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bernoulli Filter for Extended Target Tracking in the Framework of Possibility Theory


    Beteiligte:
    Chen, Zhijin (Autor:in) / Ristic, Branko (Autor:in) / Kim, Du Yong (Autor:in)


    Erscheinungsdatum :

    01.12.2023


    Format / Umfang :

    1030865 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Gaussian Mixture Extended-Target Multi-Bernoulli Filter

    Zhang, G. / Lian, F. / Han, C. et al. | British Library Online Contents | 2014



    Multisensor Poisson Multi-Bernoulli Filter for Joint Target–Sensor State Tracking

    Frohle, Markus / Lindberg, Christopher / Granstrom, Karl et al. | IEEE | 2019



    OTHR multipath tracking using the bernoulli filter

    Jinfeng Chen / Hong Ma / Chengguo Liang et al. | IEEE | 2014