Vehicular Edge Computing is a promising paradigm that provides cloud computing services closer to vehicular users. Vehicles and communication infrastructure can cooperatively provide vehicular services with low latency constraints through vehicular cloud formation and using these computational resources via task scheduling. An efficient task scheduler must decide which cloud will run the tasks, considering vehicular mobility and task requirements. This is important to minimize processing time and, consequently, monetary cost. However, the literature solutions do not consider these contextual aspects together, degrading the overall system efficiency. This work presents EFESTO, a task scheduling mechanism that considers contextual aspects in its decision process. The results show that, compared to state-of-the-art solutions, EFESTO can schedule more tasks while minimizing monetary cost and system latency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Pareto Optimality-based Task Scheduling for Vehicular Edge Computing


    Beteiligte:


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    1944190 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicular Task Offloading and Job Scheduling Method Based on Cloud-Edge Computing

    Sun, Yilong / Wu, Zhiyong / Meng, Ke et al. | IEEE | 2023


    Mobility and Deadline-Aware Task Scheduling Mechanism for Vehicular Edge Computing

    da Costa, Joahannes B. D. / de Souza, Allan M. / Meneguette, Rodolfo I. et al. | IEEE | 2023

    Freier Zugriff

    Decentralized Vehicular Edge Computing Framework for Energy-Efficient Task Coordination

    Fardad, Mohammad / Muntean, Gabriel-Miro / Tal, Irina | IEEE | 2024