In cellular networks, inter-cell interference is the main factor in the reduction of service quality for users, so intercell interference coordination (ICIC) has been widely studied to mitigate severe interference. However, in some previous work, cell- edge users are sacrificed to improve the performance of the overall system. Apart from this, most previous methods change the ICIC configuration frequently to achieve the optimal results, but in practice, the frequent ICIC reconfiguration results in large overhead for small cells. Thus, a centralized dynamic ICIC scheme is proposed in this work, including Q-learning assisted deep neural network based ICIC framework and Type-Balanced User Grouping algorithm. The simulation results show that the proposed ICIC scheme outperforms the benchmarks in both sparse and dense user distribution.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Q-Network Based Adaptive Resource Allocation with User Grouping on ICIC


    Beteiligte:
    Lee, Chien-Hao (Autor:in) / Lin, Kuang-Hsun (Autor:in) / Wei, Hung-Yu (Autor:in)


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    2125522 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Resource Allocation for ICIC in Downlink NOMA Systems

    Lee, Chien-Hao / Kobayashi, Makoto / Wei, Hung-Yu et al. | IEEE | 2019



    Adaptive Resource Allocation Based on Neural Network PID Control

    Lin, J. / Ni, H. / Sun, P. et al. | British Library Online Contents | 2013


    Deep Neural Network Based Resource Allocation for V2X Communications

    Gao, Jin / Khandaker, Muhammad R. A. / Tariq, Faisal et al. | IEEE | 2019


    Dynamic ICIC in LTE-Advanced Networks for Inter-Cell Interference Mitigation

    Xiong, Zhilan / Zhang, Min / Baker, Matthew et al. | IEEE | 2015