This study proposed a method that integrates multi-view image processing, depth estimation, and point cloud generation to accurately reconstruct a 3D model of a rail. The method is tested by positioning two webcams on the left and right sides of the rail and capturing three images of the entire rail. These images are combined into a panorama using image stitching techniques. Depth estimation is then performed using Monocular Depth Estimation, followed by background separation using Mask R-CNN to isolate the rail. The 3D model is reconstructed through 3D Reconstruction, and its quality is evaluated using an accuracy assessment. The resulting 3D model of the rail demonstrated an accuracy of 84.56% when compared to the ground truth, with the rail head 99.87%, the rail web 65.67%, and the rail foot 72.66%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    3D Reconstruction of Steel Rail using Multi-view Cameras and Mask R-CNN


    Beteiligte:


    Erscheinungsdatum :

    05.03.2025


    Format / Umfang :

    1107459 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Linear Multi-View Reconstruction of Points, Lines, Planes and Cameras Using a Reference Plane

    Rother, C. / IEEE | British Library Conference Proceedings | 2003


    Motorcycle rear view cameras

    FLANAGAN PAUL / LAWSON CLIFFORD / POWELL JOHN et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    Geometric calibration of digital cameras through multi-view rectification

    Lucchese, L. | British Library Online Contents | 2005


    Lane fusion system using forward-view and rear-view cameras

    ZENG SHUQING | Europäisches Patentamt | 2015

    Freier Zugriff

    Multi-View Surface Reconstruction Using Polarization

    Atkinson, G. / Hancock, E. / IEEE | British Library Conference Proceedings | 2005