In this paper, we tackle the problem of Unmanned Aerial (UAV) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV Path Planning Employing MPC-Reinforcement Learning Method Considering Collision Avoidance


    Beteiligte:


    Erscheinungsdatum :

    06.06.2023


    Format / Umfang :

    1719503 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Path Planning Method for Collision Avoidance of Multiple UAVs

    Kim, Hyeok / Kwak, Jeonghoon / Sim, Guichang et al. | Springer Verlag | 2017



    On path planning methods for automotive collision avoidance

    Madas, David / Nosratinia, Mohsen / Keshavarz, Mansour et al. | IEEE | 2013


    ON PATH PLANNING METHODS FOR AUTOMOTIVE COLLISION AVOIDANCE

    Madas, D. / Nosratinia, M. / Keshavarz, M. et al. | British Library Conference Proceedings | 2013