With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning for Autonomous Driving: A Survey


    Beteiligte:
    Kiran, B Ravi (Autor:in) / Sobh, Ibrahim (Autor:in) / Talpaert, Victor (Autor:in) / Mannion, Patrick (Autor:in) / Sallab, Ahmad A. Al (Autor:in) / Yogamani, Senthil (Autor:in) / Perez, Patrick (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    2210590 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Driving with Deep Reinforcement Learning

    Zhu, Yuhua / Technische Universität Dresden | SLUB | 2023



    EVALUATION OF DEEP REINFORCEMENT LEARNING ALGORITHMS FOR AUTONOMOUS DRIVING

    Stang, Marco / Grimm, Daniel / Gaiser, Moritz et al. | British Library Conference Proceedings | 2020


    Autonomous Vehicle Driving Path Control with Deep Reinforcement Learning

    Tiong, Teckchai / Saad, Ismail / Teo, Kenneth Tze Kin et al. | IEEE | 2023


    Evaluation of Deep Reinforcement Learning Algorithms for Autonomous Driving

    Stang, Marco / Grimm, Daniel / Gaiser, Moritz et al. | IEEE | 2020