High speed multi-phase machine has drawn widely attention towards the development of electrification due to its high power density and fault tolerant capability. A 50 kW high speed nine-phase permanent magnet synchronous machine has been designed for more electric aircraft, of which the fundamental frequency is up to 2 kHz. Analysis in terms of stability, parameter sensitivity, system stiffness, transient and steady-state responses are carried out to compare the conventional proportional-integral (PI) and the complex vector current controllers. Simulation results show that the combination of complex vector current controller with virtual resistance and the improved anti-windup scheme is the best choice in all test aspects. What is more, by using the double sampling technique, the current THD is maintained less than 10% at the desired operation points when the switching frequency to fundamental frequency ratio ($R$) is above 10, and the system stability is maintained when the $R$ is only 5.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimised Current Loop Design for a High Speed Nine-Phase Permanent Magnet Synchronous Machine in More Electric Aircraft: A Case Study


    Beteiligte:
    Tang, Mi (Autor:in) / Huang, Zhen (Autor:in) / Wang, Bo (Autor:in) / Lang, Xiaoyu (Autor:in) / Velmurugan, Ganeish (Autor:in) / Yang, Tao (Autor:in) / Gerada, Chris (Autor:in) / Zanchetta, Pericle (Autor:in)


    Erscheinungsdatum :

    21.06.2021


    Format / Umfang :

    2923731 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault Tolerant Multi-phase Permanent Magnet Synchronous Motor for the More Electric Aircraft

    Bolvashenkov, Igor / Herzog, Hans-Georg / Ismagilov, Flyur et al. | Springer Verlag | 2019


    Electric Machine Design Tool for Permanent Magnet Synchronous Machines

    Kalt, Svenja / Erhard, Jonathan / Danquah, Benedikt et al. | IEEE | 2019