This paper breaks with the common practice of using a joint state space representation and performing the joint data association in multi-object tracking. Instead, we present an interactively distributed framework with linear complexity for real-time applications. When objects do not interact on each other our approach performs like multiple independent trackers. When, the objects are in close proximity or present occlusions, we propose a magnetic-inertia potential model to handle the "error merge" and "labeling" problems in a particle filtering framework. Specifically we propose to model the interactive likelihood densities by a "gravitation" and "magnetic" repulsion scheme and relax the common first-order Markov chain assumption by using an "inertia" Markov chain. Our model represents the cumulative effect of virtual physical forces that objects undergo while interacting with others. It implicitly handles the "error merge" and "labeling" problems and thus solves the difficult object occlusion and data association problems using an innovative scheme. Our preliminary work has demonstrated that the proposed approach is far superior to existing methods not only in robustness but also in speed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time interactively distributed multi-object tracking using a magnetic-inertia potential model


    Beteiligte:
    Wei Qu, (Autor:in) / Schonfeld, D. (Autor:in) / Mohamed, M. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    510970 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Interactively Distributed Multi-Object Tracking Using a Magnetic-Inertia Potential Model

    Qu, W. / Schonfeld, D. / Mohamed, M. et al. | British Library Conference Proceedings | 2005



    A distributed approach for real-time multi-camera multiple object tracking

    Previtali, F. / Bloisi, D. D. / Iocchi, L. | British Library Online Contents | 2017


    Real-Time Multi-Object Tracking using Random Finite Sets

    Reuter, Stephan / Wilking, Benjamin / Wiest, Jurgen et al. | IEEE | 2013


    Interactively Matching Hand-Drawings Using Induction

    Pearce, A. R. / Caelli, T. | British Library Online Contents | 1999