The problem of fast rigid matching of 3D curves with subvoxel precision is addressed. More invariant parameters are used, and new hash tables are implemented in order to process larger and more complex sets of data curves. There exists a Bayesian theory of geometric hashing that explains why local minima are not really a problem. The more likely transformation always wins. It is also possible to predict the uncertainty on the match with the help of the Kalman filter, and compare it with real measures.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    New developments on geometric hashing for curve matching


    Beteiligte:
    Gueziec, A. (Autor:in) / Ayache, N. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    215868 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Bayesian Approach to Model Matching with Geometric Hashing

    Rigoutsos, I. / Hummel, R. | British Library Online Contents | 1995


    Where's Wally? - Geometric Hashing for Model Based Image Matching

    Deguchi, K. | British Library Online Contents | 1993


    Geometric hashing with attributed features

    Jyh-Jong Liu / Hummel, R. | IEEE | 1994


    Geometric Hashing with Attributed Features

    Liu, J.-J. / Hummel, R. / IEEE Computer Society; Technical Committee on Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1994


    Content-based image retrieval by interest-point matching and geometric hashing [4925-14]

    Hsu, C.-T. / Shih, M.-C. / Society of Photo-optical Instrumentation Engineers et al. | British Library Conference Proceedings | 2002