Discontinuity-preserving Bayesian image restoration, based on Markov random fields (MRF), involves an intensity field, representing the image to be restored, and an edge (discontinuity) field. The usual strategy is to perform joint maximum a posteriori (MAP) estimation of the intensity and discontinuity fields, this requiring the specification of Bayesian priors. Departing from this approach, we interpret the discontinuity locations as deterministic unknown parameters of the intensity field. This leads to a parameter estimation problem with the important feature of having an unknown number of parameters. We introduce a discontinuity-preserving image restoration criterion (and an algorithm to implement it) based on the minimum description length (MDL) principle and built upon a compound Gauss-Markov random field (CGMRF) model; the proposed formulation does not involve the specification of a prior for the edge field which is adaptively inferred from the data.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive discontinuity location in image restoration


    Beteiligte:


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    501801 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Discontinuity Location in Image Restoration

    Figueiredo, M. A. T. / Leitao, J. M. N. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    A discontinuity adaptive Markov model for color image smoothing

    Kang, D. J. / Roh, K. S. | British Library Online Contents | 2001



    New Adaptive Iterative Image Restoration Algorithm

    Sheung-On Choy, S. / Chan, Y.-H. / Siu, W.-C. et al. | British Library Conference Proceedings | 1994


    New adaptive iterative image restoration algorithm

    Choy, S.S.O. / Yuk-Hee Chan / Wan-Chi Siu | IEEE | 1994