Prediction-based anomaly detection methods for time series have been studied for decades and demonstrated to be useful in many applications. However, many predictors cannot accurately predict values around abrupt changes in time series, which may result in false detections or missed detections. In this paper, the problem is addressed using an anomaly scoring method for prediction-based anomaly detection. A Long Short-Term Memory (LSTM) network is used for prediction, and a dynamic thresholding method is used for anomaly extraction from prediction error sequences. The pattern of falsely-detected anomalies, or false positive sequences (FPS), in training data is learned by a clustering algorithm. A score is assigned to each detected anomaly in test data according to its distance to the nearest FPS pattern learned from training data. The effectiveness of this method is demonstrated by testing it on a variety of public time series datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly Scoring for Prediction-Based Anomaly Detection in Time Series


    Beteiligte:
    Li, Tianyu (Autor:in) / Comer, Mary L. (Autor:in) / Delp, Edward J. (Autor:in) / Desai, Sundip R. (Autor:in) / Mathieson, James L. (Autor:in) / Foster, Richard H. (Autor:in) / Chan, Moses W. (Autor:in)


    Erscheinungsdatum :

    01.03.2020


    Format / Umfang :

    1041781 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Time Series Anomaly Detection Based on GAN

    Sun, Yong / Yu, Wenbo / Chen, Yuting et al. | IEEE | 2019


    ANOMALY PREDICTION AND ANOMALY DETECTION FOR AIRCRAFT EQUIPMENT

    DMITRIY KORCHEV / CHARLES E MARTIN / LU TSAI-CHING et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Adaptable Anomaly Detection in Traffic Flow Time Series

    Alam, Md Rakibul / Gerostathopoulos, Ilias / Amini, Sasan et al. | IEEE | 2019


    Anomaly detection in time series via robust PCA

    Jin, Yongjun / Qiu, Chenlu / Sun, Lei et al. | IEEE | 2017


    ANOMALY DETECTION SYSTEM, ANOMALY DETECTION APPARATUS, AND ANOMALY DETECTION METHOD

    KOBAYASHI AYUMI | Europäisches Patentamt | 2023

    Freier Zugriff