This paper discusses a new path tracking controller strategy for autonomous vehicle. Preliminary works done by researchers shows that most of the controller performs well in a straight path and normal curve. However, the problem arises in tight curve or discontinuous path. Therefore, this work aims to reduce the gap on the tight corner problem. The controller is designed based on the dynamic curvature estimation to predict the path condition and modify the wheel speed and steering wheel angle accordingly. In this technique, the curvature estimation algorithm is presented as a required input to the controller. The curvature estimation allows the vehicle to react based on the curvature profile and threshold region detection. The comparison is made based on three different path types. The experimental results on the autonomous prototype platform are discussed to show the effectiveness of the controller.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic curvature path tracking control for autonomous vehicle: Experimental results




    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    658685 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Vehicle Path Tracking Control based on Adaptive Dynamic Programming

    Guo, Hongyan / Li, Guangyao / Liu, Jun et al. | IEEE | 2023


    Lateral control in path-tracking of autonomous vehicle

    YU JINGSHENG | Europäisches Patentamt | 2024

    Freier Zugriff

    Path tracking control for an autonomous underwater vehicle

    Hernandez, Ruben D. / Falchetto, Vinicius B. / Ferreira, Janito V. | IEEE | 2015


    LATERAL CONTROL IN PATH-TRACKING OF AUTONOMOUS VEHICLE

    YU JINGSHENG | Europäisches Patentamt | 2022

    Freier Zugriff

    Autonomous road vehicle path planning and tracking control

    Guvenç, Levent / Aksun-Guvenç, Bilin / Zhu, Sheng et al. | TIBKAT | 2022