In this paper we study how estimates of ego-motion based on feature tracking (visual odometry) can be improved using a rough (low accuracy) map of where the observer has been. We call the process of aligning the visual ego-motion with the map locations as map correlation. Since absolute estimates of camera position are unreliable, we use stable local information such as change in orientation to perform the alignment. We also detect when the observer's path has crossed back on itself which helps improve both the visual odometry estimates and the alignment between the video and map sequences. The final alignment is computed using a graphical model whose MAP estimate is inferred using loopy belief propagation. Results are presented on a number of indoor and outdoor sequences.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual odometry and map correlation


    Beteiligte:
    Levin, A. (Autor:in) / Szeliski, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    1179635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Visual Odometry and Map Correlation

    Levin, A. / Szeliski, R. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Correlation-based visual odometry for ground vehicles

    Nourani-Vatani, N. / Borges, P. V. | British Library Online Contents | 2011


    Visual Odometry

    Nister, D. / Naroditsky, O. / Bergen, J. et al. | British Library Conference Proceedings | 2004


    Visual odometry

    Nister, D. / Naroditsky, O. / Bergen, J. | IEEE | 2004


    Automotive visual odometry

    Buczko, Martin / Shaker Verlag | TIBKAT | 2018