Sensor fusion is crucial for an accurate and robust perception system on autonomous vehicles. Most existing datasets and perception solutions focus on fusing cameras and LiDAR. However, the collaboration between camera and radar is significantly under-exploited. Incorporating rich semantic information from the camera and reliable 3D information from the radar can achieve an efficient, cheap, and portable solution for 3D perception tasks. It can also be robust to different lighting or all-weather driving scenarios due to the capability of mmWave radars. In this paper, we introduce the CRUW3D dataset, including 66K synchronized and well-calibrated camera, radar, and LiDAR frames in various driving scenarios. Unlike other large-scale autonomous driving datasets, our radar data is in the format of radio frequency (RF) tensors that contain not only 3D location information but also spatio-temporal semantic information. This kind of radar format can enable machine learning models to generate more reliable object perception results after interacting and fusing the information or features between the camera and radar. We run several camera- and radar-based baseline methods for 3D object detection and multi-object tracking on our dataset. We hope the CRUW3D dataset will foster radar and multi-modal 3D perception research. CRUW3D is available at https://huggingface.co/datasets/uwipl/CRUW3D


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous Driving


    Beteiligte:
    Wang, Yizhou (Autor:in) / Cheng, Jen-Hao (Autor:in) / Huang, Jui-Te (Autor:in) / Kuan, Sheng-Yao (Autor:in) / Fu, Qiqian (Autor:in) / Ni, Chiming (Autor:in) / Hao, Shengyu (Autor:in) / Wang, Gaoang (Autor:in) / Xing, Guanbin (Autor:in) / Liu, Hui (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    2226354 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    4D mmWave Radar for Autonomous Driving Perception: A Comprehensive Survey

    Fan, Lili / Wang, Junhao / Chang, Yuanmeng et al. | IEEE | 2024


    Vision-based environmental perception for autonomous driving

    Liu, Fei / Lu, Zihao / Lin, Xianke | SAGE Publications | 2025

    Freier Zugriff


    Frontal object perception using radar and mono-vision

    Chavez-Garcia, R. Omar / Burlet, Julien / Vu, Trung-Dung et al. | IEEE | 2012


    Frontal Object Perception Using Radar and Mono-Vision

    Chavez-Garcia, R.O. / Burlet, J. / Vu, T.-D. et al. | British Library Conference Proceedings | 2012