We consider a sequence of three models for skin detection built from a large collection of labelled images. Each model is a maximum entropy model with respect to constraints concerning marginal distributions. Our models are nested. The first model is well known from practitioners. Pixels are considered as independent. The second model is a Hidden Markov Model. It includes constraints that force smoothness of the solution. The third model is a first order model. The full color gradient is included. Parameter estimation as well as optimization cannot be tackled without approximations. We use thoroughly Bethe tree approximation of the pixel lattice. Within it , parameter estimation is eradicated and the belief propagation algorithm permits to obtain exact and fast solution for skin probability at pixel locations. We then assess the performance on the Compaq database.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistical Models for Skin Detection


    Beteiligte:
    Jedynak, Bruno (Autor:in) / Zheng, Huicheng (Autor:in) / Daoudi, Mohamed (Autor:in)


    Erscheinungsdatum :

    01.06.2003


    Format / Umfang :

    302052 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Statistical Color Models with Application to Skin Detection

    Jones, M. J. / Rehg, J. M. | British Library Online Contents | 2002


    Skin detection using pairwise models

    Jedynak, B. / Zheng, H. / Daoudi, M. | British Library Online Contents | 2005



    Statistical Models for Intruder Detection in a Distributed Automated System

    Krotova, Elena / Urazbaeva, Yulyia | Springer Verlag | 2022


    Classification and statistical analysis of skin cancer terahertz spectra

    Berryman, M. J. / Rainsford, T. J. / Abbott, D. | IEEE | 2006