Modern communication networks like 5G and 6G are increasingly integrating Distributed Artificial Intelligence (DAI) to provide fast decision-making services like traffic management despite both the unpredictable patterns of network traffic and the intrinsic dynamism of the underlying communication network. In particular, Distributed Artificial Intelligence will enable optimal network resource usage and prevent network congestion, addressing the challenges posed by the dynamic patterns characterizing complex communication networks like 5G and 6G networks.This paper focuses on designing and assessing a new traffic management solution based on a Multi-Agent Deep Reinforcement Learning (MA-DRL). Our solution aims at adapting to network conditions including changing traffic loads, fluctuating link delays, and unpredictable packet loss scenarios, to prevent network traffic congestion, while improving throughput, latency, and loss compared to existing traffic management methods.Distributed AI, MARL, Delay optimization, packet loss optimization, traffic management, congestion control


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-Agent Deep Reinforcement Learning Approach for Traffic Management in Complex Communication Networks


    Beteiligte:


    Erscheinungsdatum :

    12.05.2025


    Format / Umfang :

    488736 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A multi‐agent deep reinforcement learning approach for traffic signal coordination

    Hu, Ta‐Yin / Li, Zhuo‐Yu | Wiley | 2024

    Freier Zugriff

    Optimizing Traffic Lights with Multi-agent Deep Reinforcement Learning and V2X communication

    Hussain, Azhar / Wang, Tong / Jiahua, Cao | ArXiv | 2020

    Freier Zugriff

    A Deep Ensemble Multi-Agent Reinforcement Learning Approach for Air Traffic Control

    Ghosh, Supriyo / Laguna, Sean / Lim, Shiau Hong et al. | ArXiv | 2020

    Freier Zugriff