This article considers the problem of distributed robust state estimation for sensor networks in the presence of model uncertainty and multiplicative noise. More precisely, we assume that the modeling uncertainty, i.e., the actual state space model belongs to an ambiguity set or a set of convex polytopic uncertain parameters. Several robust Kalman filters are proposed based on projection theorem, variance-constrained optimization, and robust mean square error estimation with different types of ambiguity sets. Stability analysis and simulation example verify the presented distributed robust filters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distributed Robust Kalman Filters Under Model Uncertainty and Multiplicative Disturbance


    Beteiligte:
    Yu, Xingkai (Autor:in) / Li, Jianxun (Autor:in)


    Erscheinungsdatum :

    01.04.2023


    Format / Umfang :

    1346250 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust centralized fusion time-varying Kalman filters

    Qi, Wenjuan / Sheng, Zunbing / Shen, Cong | IEEE | 2018


    Polynomial Kalman Filters

    Musoff, Howard / Zarchan, Paul | AIAA | 2005


    Multiplicative Extended Kalman Filter for Relative Rotorcraft Navigation

    Leishman, Robert C. / McLain, Timothy W. | AIAA | 2015


    Polynomial Kalman Filters

    Zarchan, Paul / Musoff, Howard | AIAA | 2015


    Robust Nonlinear Kalman Filters for Nonlinear Systems with Parameter Uncertainties

    Ishihara, Shinji / Yamakita, Masaki | British Library Online Contents | 2017