Recent years have witnessed a surge of developments in deep learning (DL) motivated by a variety of contemporary applications. The conventional DL-based automatic modulation classification (AMC) methods are always relying on a great quantity of data. In this article, we propose a DL-based AMC model with short data for the spectrum sensing of wireless communication signals. First, a hopping transform unit is proposed to represent the transient variation occurred either by frequency, amplitude, or phase modulations. Second, a bidirectional long short-term memory-based hopping feature perception model, namely deep-learning hopping capture model (DHCM), is built for the AMC. A comprehensive comparison of the DHCM with other existing methods is then provided under various signal-to-noise ratios. The experimental results demonstrate the superiority of the proposed method under short data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep-Learning Hopping Capture Model for Automatic Modulation Classification of Wireless Communication Signals


    Beteiligte:
    Li, Lin (Autor:in) / Dong, Zhiyuan (Autor:in) / Zhu, Zhigang (Autor:in) / Jiang, Qingtang (Autor:in)


    Erscheinungsdatum :

    01.04.2023


    Format / Umfang :

    4232209 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic Modulation Classification in RIS-Assisted Wireless Communication Systems using Ensemble Learning Techniques

    Vamsidhar, Subramanyam Raghu / Dash, Soumya P. / Acharya, Renuka et al. | IEEE | 2023


    Depth Analysis in Deep Learning-Based Automatic Modulation Classification

    Osman Kaya / Tansal Güçlüoğlu / Hacı İlhan | DOAJ | 2024

    Freier Zugriff