We present a monocular object tracker, able to detect and track multiple objects in non-controlled environments. Bayesian per-pixel classification is used to build a tracking framework that segments an image into foreground and background objects, based on observations of object appearances and motions. Gaussian mixtures are used to build the color appearance models. The system adapts to changing lighting conditions, handles occlusions, and works in real-time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian Pixel Classification for Human Tracking


    Beteiligte:
    Roth, Daniel (Autor:in) / Doubek, Petr (Autor:in) / Gool, Luc Van (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    464978 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Sub-Pixel Bayesian Estimation of Albedo and Height

    Shekarforoush, H. / Berthod, M. / Zerubia, J. et al. | British Library Online Contents | 1996


    Classification of areas using pixel-by-pixel and sample classifiers

    Dejesusparada, N. / Kumar, R. / Niero, M. et al. | NTRS | 1979


    Bayesian Classification Scheme

    Stutz, John / Cheeseman, Peter / Taylor, Will et al. | NTRS | 1992


    Multistatic Bayesian extended target tracking

    Vivone, Gemine / Braca, Paolo / Granstrom, Karl et al. | IEEE | 2016


    Gibbs likelihoods for Bayesian tracking

    Roth, S. / Sigal, L. / Black, M.J. | IEEE | 2004