Multiple-input multiple-output (MIMO) and low-density parity check (LDPC) codes are two of the fundamental technologies in the fifth-generation (5G) networks, where an efficient power allocation scheme is desired to minimize the bit error rate (BER) of the LDPC-coded MIMO system. However, the conventional power allocation methods do not take into account the constraint of modulation and coding scheme (MCS), which may degrade the BER performance. To solve this issue, we propose a deep learning based method to predict the efficient power allocation scheme in coded MIMO systems. Specifically, a neural network is built to learn the complex BER-SNR function to derive the power allocation ratio between the parallel MIMO streams, where the training label is acquired based on the exhaustive searching algorithm. Simulation results show that our proposed method could achieve better BER performance than its conventional counterparts.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Power Allocation in Coded MIMO Systems


    Beteiligte:
    Wu, Haochen (Autor:in) / Ma, Ke (Autor:in) / Ming, Yang (Autor:in) / Sha, Ziyuan (Autor:in) / Wang, Zhaocheng (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    1468349 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improving MIMO Secrecy Rate through Efficient Power Allocation

    Jyothsna, S / Theagarajan, Lakshmi N. | IEEE | 2022


    Energy-Efficient Power Allocation for Cognitive MIMO Channels

    Sboui, Lokman / Rezki, Zouheir / Sultan, Ahmed et al. | IEEE | 2016



    An Iterative Receiver for Polar-Coded Massive MU-MIMO Systems

    Sun, Yi / Jiang, Ming / Zhao, Chunming et al. | IEEE | 2019