Traditional vehicle trajectory prediction models widely exist the generalization problem towards unknown scenarios. In this paper, we address the generalization via the following ways. A conditional variational autoencoder based on invariance penalty is adopted to predict trajectory endpoints. In addition, we propose a domain division method to enhance the performance of the invariance principle and design the maneuver-related subtasks to reconstruct the consistent features of trajectories. The experiment is carried out on the INTERACTION dataset, which is well employed in the study of trajectory domains. Compared to the SOTA models, the mADE at 3s decreases from 1.16 to 0.53. The ablation study demonstrates the effectiveness of each module in our model. The results show that our method achieves excellence performance when generalized to unknown domains.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle trajectory prediction model for unseen domain based on the invariance principle


    Beteiligte:
    Lu, Yifan (Autor:in) / Yang, Feng (Autor:in) / Li, Xuanpeng (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1278058 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle trajectory prediction method, trajectory prediction model training method and device

    SUN XINJIE / TIAN LEI / LIU YANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Pixel Invisibility: Detect Object Unseen in Color Domain

    Wang, Yongxin / Wijesekera, Duminda | TIBKAT | 2021


    Goal-based Neural Physics Vehicle Trajectory Prediction Model

    Gan, Rui / Shi, Haotian / Li, Pei et al. | ArXiv | 2024

    Freier Zugriff

    Attention Based Vehicle Trajectory Prediction

    Messaoud, Kaouther / Yahiaoui, Itheri / Verroust-Blondet, Anne et al. | IEEE | 2021


    Peripheral vehicle trajectory prediction method based on vehicle trajectory interaction dynamics

    ZHENG XUELIAN / HU XUGE / REN YUANYUAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff