In this paper, a new technique called Embedded Variational Auto Encoder (EVAE) is proposed for Vehicle-to-Everything (V2X) up-link scenario. An innovative method has been proposed for the accurate prediction of the interference at the receiving end of each user which leads to the enhancement of the end-to-end performance of the V2X. The new algorithm infers noise and fading probabilistic models effect using decentralized Probabilistic Neural Networks (PNNs), while a second centralized PNN has been embedded inside the first group of the PNNs. This single PNN will be used to infer the interference effect on each V2X receiver. The performance of EVAE is compared with the recently proposed neural networks (NN) algorithms based on conventional auto-encoders (AE). Numerical and simulation results for the achievable symbol error rates (SER) have shown a significant improvement particularly in the high SINR regime, compared with the classical systems based on maximum likeli-hood detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Variational Auto-encoders application in wireless Vehicle-to-Everything communications


    Beteiligte:


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    431829 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Consistency Regularization for Variational Auto-Encoders

    Sinha, Samarth / Dieng, Adji B. | ArXiv | 2021

    Freier Zugriff

    Variational auto-encoders with Student's t-prior

    Abiri, Najmeh / Ohlsson, Mattias | ArXiv | 2020

    Freier Zugriff

    Conditional Image Generation by Conditioning Variational Auto-Encoders

    Harvey, William / Naderiparizi, Saeid / Wood, Frank | ArXiv | 2021

    Freier Zugriff

    Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders

    Chen, Rui / Zhang, Jianfeng / Liang, Yixun et al. | ArXiv | 2024

    Freier Zugriff

    Adversarial Training of Variational Auto-encoders for High Fidelity Image Generation

    Khan, Salman H. / Hayat, Munawar / Barnes, Nick | ArXiv | 2018

    Freier Zugriff