To improve the diagnosis accuracy of tolerance fault for analog circuits, a Wavelet Neural Network (WNN) diagnosis method based on a modified UKF algorithm is proposed on the basis of feature extraction. An adaptive factor based on variance inflation principle is firstly introduced to improve the performance of UKF algorithm. Then, the modified UKF algorithm is used to perform optimal estimation for WNN parameters, establishing the tolerance fault diagnosis model based on feature extraction. The simulation results on Sallen-Key band-pass filter show that, the proposed method has a good convergence rate and diagnosis correct rate, which validates the feasibility and effectiveness of this method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tolerance Fault with Variance Inflation Factor for Analog Circuit


    Beteiligte:
    Gan, Xusheng (Autor:in) / Sun, Jingiuan (Autor:in) / Li, Shuangfeng (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    64761 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Kalman Filter and Correlated Measurement Noise: The Variance Inflation Factor

    Kermarrec, Gael / Jain, Ankit / Schon, Steffen | IEEE | 2022




    Analog Circuit Fault Diagnosis with Multi-Objective Particle Swarm Optimization

    Xu, Y. / Sun, J. / Chen, X. et al. | British Library Online Contents | 2012


    Statistical tolerance limits using components of variance

    NADOLSKI, L. / WOLTING, DUANE | AIAA | 1992