The goal of radar space-time adaptive processing (STAP) is to detect slow moving targets from a moving platform, typically airborne or spaceborne. STAP generally requires the estimation and the inversion of an interference-plus-noise (I+N) covariance matrix. To reduce both the number of samples involved in the estimation and the computational cost inherent to the matrix inversion, many suboptimum STAP methods have been proposed. We propose a new canonical framework that encompasses all suboptimum STAP methods we are aware of. The framework allows for both covariance-matrix (CM) estimation and range-dependence compensation (RDC); it also applies to monostatic and bistatic configurations. Finally, we discuss a taxonomy for classifying the methods described by the framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Framework and Taxonomy for Radar Space-Time Adaptive Processing (STAP) Methods


    Beteiligte:


    Erscheinungsdatum :

    01.07.2007


    Format / Umfang :

    1393011 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch