A distance transformation converts a digital binary image that consists of object (foreground) and non-object (background) pixels into a gray-scale image in which each object pixel has a value corresponding to the minimum distance from the background by a distance function. Due to its nonlinearity, the global operation of Euclidean distance transformation (EDT) is difficult to decompose into small neighborhood operations. Two efficient algorithms on EDT are presented, using integers of squared Euclidean distances in which the global computations can be equivalent to local 3/spl times/3 neighborhood operations. The first algorithm requires only a limited number of iterations on the chain propagation. The second algorithm can avoid iterations, and simply requires two scans of the image. The complexity of both algorithms is only linearly proportional to image size.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On solving exact Euclidean distance transformation with invariance to object size


    Beteiligte:
    Shih, F.Y. (Autor:in) / Yang, C.-H.T. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    162543 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exact medial axis with euclidean distance

    Remy, E. / Thiel, E. | British Library Online Contents | 2005


    A Parallel Euclidean Distance Transformation Algorithm

    Embrechts, H. / Roose, D. | British Library Online Contents | 1996


    An Exact Euclidean Distance Transform for Universal Path Planning

    Elizondo-Leal, J C / Ramírez-Torres, G | IEEE | 2010



    Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods

    Cuisenaire, O. / Macq, B. | British Library Online Contents | 1999