We propose a stroke classification method based on affine alignment, appropriate for online recognition of mathematical handwriting. The method, essentially linear is simple and computationally efficient. The modeling limitations of the affine group are overcome by choosing adequate error functions and by performing alignment with respect to interpolated prototypes. So, moderate nonlinear transformations are tolerated, making the approach invariant to a wide range of handwriting deformations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Affine alignment for stroke classification


    Beteiligte:
    Ruiz, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    354878 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Affine Alignment for Stroke Classification

    Ruiz, A. | British Library Conference Proceedings | 2002



    A Statistical Method for Object Alignment Under Affine Transformation

    Heikkila, J. / IEEE | British Library Conference Proceedings | 2003


    Transfer Alignment Based on Affine Transformation Model with Noniterative Approach

    Xu, Geng / He, Yongxu / Zhang, Yonggang | Springer Verlag | 2022


    Affine Shape Alignment Using Covariant Gaussian Densities: A Direct Solution

    Domokos, C. | British Library Online Contents | 2015