Traffic data collected from sensor networks often exhibit strong spatial correlations and recurrent temporal patterns. Learning these patterns and diagnosing anomalies in such spatiotemporal traffic data is critical to improving transportation systems and services. This paper proposes a dynamic framework to model spatiotemporal traffic data, with a particular application on diagnosing anomalies. Within the framework, we focus on characterizing the variation in system dynamics with a time-varying vector autoregressive model. We impose a low-rank tensor structure to model the collection of time-varying system matrices. As the temporal factor matrix captures the principal patterns/signatures across all time-varying system matrices, it is a useful tool to diagnose abnormal generative mechanisms and unexpected temporal patterns. We demonstrate the proposed tensor learning framework’s effectiveness by experimenting with a synthetic data set and real-world spatiotemporal traffic speed data set. The results show the superiority of the proposed model in uncovering anomalous traffic network dynamics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Diagnosing Spatiotemporal Traffic Anomalies With Low-Rank Tensor Autoregression


    Beteiligte:
    Wang, Xudong (Autor:in) / Sun, Lijun (Autor:in)


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    3431648 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation

    Chen, Xinyu / Lei, Mengying / Saunier, Nicolas et al. | IEEE | 2022


    A Probabilistic Tensor Factorization Approach to Detect Anomalies in Spatiotemporal Traffic Activities

    Wang, Xudong / Fagette, Antoine / Sartelet, Pascal et al. | IEEE | 2019


    Low-Rank Tensor Completion With 3-D Spatiotemporal Transform for Traffic Data Imputation

    Shu, Hao / Wang, Hailin / Peng, Jiangjun et al. | IEEE | 2024



    Spatiotemporal traffic data imputation by synergizing low tensor ring rank and nonlocal subspace regularization

    Wu, Peng‐Ling / Ding, Meng / Zheng, Yu‐Bang | Wiley | 2023

    Freier Zugriff