In this paper, we consider the dynamic content caching issue in the cache-enabled Internet of Things (IoT) systems. For real-time applications in cache-enabled IoT systems, it is imperative to design dynamic content caching schemes to reduce the energy consumption of sensors and improve the freshness of information at users. We first design a dynamic content caching procedure for a cache-enabled IoT system with limited cache capacity and express the evolution of the Age of Information (AoI) at both the edge caching node and each user. Then, we formulate the dynamic content caching problem as a Markov Decision Process to minimize the expectation of a long-term accumulative cost, which jointly considers the average AoI of users and the energy consumption of sensors. To solve this problem, we propose an actor-critic based caching algorithm without prior knowledge of users’ content demands. The numerical results show that the proposed algorithm can achieve lower average AoI and energy consumption than other baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Content Caching Based on Actor-Critic Reinforcement Learning for IoT Systems


    Beteiligte:
    Lai, Lifeng (Autor:in) / Zheng, Fu-Chun (Autor:in) / Wen, Wanli (Autor:in) / Luo, Jingjing (Autor:in) / Li, Ge (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    832205 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Actor-Critic Reinforcement Learning for Control With Stability Guarantee

    Han, M / Zhang, L / Wang, J et al. | BASE | 2020

    Freier Zugriff

    Merkmalsextraktor für ein neuronales Netzwerk für Actor-Critic-Reinforcement-Learning-Modelle

    EVANS JARED / THOMPSON JEFFREY KEATING / KROENER CHRISTOPH | Europäisches Patentamt | 2024

    Freier Zugriff

    Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control

    Dally, Killian / Kampen, Erik-Jan Van | TIBKAT | 2022


    Improving Generalization of Reinforcement Learning with Minimax Distributional Soft Actor-Critic

    Ren, Yangang / Duan, Jingliang / Li, Shengbo Eben et al. | IEEE | 2020