In this work, we give a complete characterization of the $\epsilon$-stable region in dynamic downlink random cellular networks. The $\epsilon$-stable region is the set of arrival rates such that the proportion of unstable queues in the network is not larger than $\epsilon$. We derive upper and lower bounds as well as an approximation of the critical arrival rate, which delimits the $\epsilon-$stable region. The developed model is based on stochastic geometry and queuing theory to handle the interaction between the transmit success probability and the queuing state evolution. Extensive numerical simulations are provided to confirm the tightness of the approximation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The ϵ-stable region analysis in dynamic downlink cellular networks


    Beteiligte:
    Liu, Qiong (Autor:in) / Baudais, Jean-Yves (Autor:in) / Mary, Philippe (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    509291 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Unlicensed Band Access for Downlink Cellular Networks

    Kim, Hyunsoo / Bang, Jonghyun / Kim, Seokjung et al. | IEEE | 2015


    Analysis of Area Spectral Efficiency in D2D Underlaid Downlink Cellular Networks

    Zhang, Youwen / Qiu, Ling / Chen, Guangji et al. | IEEE | 2018



    Queue Analysis with Finite Buffer by Stochastic Geometry in Downlink Cellular Networks

    Liu, Qiong / Baudais, Jean-Yves / Mary, Philippe | IEEE | 2021