Accurate calibration of car-following models is essential for understanding human driving behaviors and implementing high-fidelity microscopic simulations. This work proposes a memory-augmented Bayesian calibration technique to capture both uncertainty in the model parameters and the temporally correlated behavior discrepancy between model predictions and observed data. Specifically, we characterize the parameter uncertainty using a hierarchical Bayesian framework and model the temporally correlated errors using Gaussian processes. We apply the Bayesian calibration technique to the intelligent driver model (IDM) and develop a novel stochastic car-following model named memory-augmented IDM (MA-IDM). To evaluate the effectiveness of MA-IDM, we compare the proposed MA-IDM with Bayesian IDM in which errors are assumed to be i.i.d., and our simulation results based on the HighD dataset show that MA-IDM can generate more realistic driving behaviors and provide better uncertainty quantification than Bayesian IDM. By analyzing the lengthscale parameter of the Gaussian process, we also show that taking the driving actions from the past five seconds into account can be helpful in modeling and simulating the human driver’s car-following behaviors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian Calibration of the Intelligent Driver Model


    Beteiligte:
    Zhang, Chengyuan (Autor:in) / Sun, Lijun (Autor:in)


    Erscheinungsdatum :

    01.08.2024


    Format / Umfang :

    3422134 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improving the Intelligent Driver Model by Incorporating Vehicle Dynamics: Microscopic Calibration and Macroscopic Validation

    Salles, Dominik / Oswald, Steve / Reuss, Hans-Christian | ArXiv | 2024

    Freier Zugriff



    Mixture of behaviors in a Bayesian autonomous driver model

    Möbus, Claus / Eilers, Mark / Zilinski, Malte et al. | Tema Archiv | 2009


    Driver Intent Inference at Urban Intersections Using the Intelligent Driver Model

    Liebner, M. / Baumann, M. / Klanner, F. et al. | British Library Conference Proceedings | 2012