Monkeypox virus is widely spreading across the world at a rapid rate, after the aftermath of COVID-19 disease. It is spread via body contact, droplets, or mucusof the eye, nose, or mouth. Some of the early-stage symptoms of patients are fever, aches in body or fatigue or red bump on the skin. Monkeypox is a disease from the genus Orthopoxvirus. It closely resembles chickenpox, smallpox and measles regarding clinical features. The minor variations in rashes on the skin, coupled with the relative rareness of monkeypox have made the diagnosis of this condition at early stage challenging for healthcare professionals. The symptoms will last for 2 to 4 weeks. In this paper, Monkeypox Skin Image Dataset is used to study the efficiency using Convolution Neural Network classification models on the images of skin for Monkeypox detection among smallpox, chickenpox and measles. This study found that ResNet-50 model has great potential in the detection of Monkeypox disease.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Classification of Monkeypox Disease based on Deep Learning


    Beteiligte:
    Deepa (Autor:in) / Shetty, P Rajalaxmi (Autor:in) / Shetty, Prajna S (Autor:in) / Namita, S (Autor:in) / Sahana (Autor:in)


    Erscheinungsdatum :

    06.11.2024


    Format / Umfang :

    672758 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated Classification of rice leaf disease using Deep Learning Approach

    Cherukuri, Naresh / Kumar, G.Ravi / Gandhi, Ongole et al. | IEEE | 2021


    Deep Learning-Based Vehicle Classification

    Muhib, Raghib Barkat / Ahmad, Imran Shafiq / Boufama, Boubakeur | Springer Verlag | 2023


    Disease Classification in Paddy Crop Leaves Using Deep Learning

    Kavin Kumar, S / Kowshik, T / Krishna Harini, M et al. | IEEE | 2023


    Edge AI-Based Automated Detection and Classification of Road Anomalies in VANET Using Deep Learning

    Rozi Bibi / Yousaf Saeed / Asim Zeb et al. | DOAJ | 2021

    Freier Zugriff

    CIDC-Net: Chest-X Ray Image based Disease Classification Network using Deep Learning

    Meghana, M / Bhargavaram, Muppuru / Sannareddy, Vamsi | IEEE | 2022