In this paper, segmented cellular neural networks (SCNN) have been applied to noisy satellite imagery to improve its performance and appearance. Because of the importance of imagery quality, SCNN has been applied to data for image processing applications that for noise filtering. Multi-level non-linear output capability of SCNN improves image quality. In training recurrent perceptron learning algorithm (RPLA) is used as a learning algorithm. They are applied to noise mounted satellite imagery successfully.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The application of segmented cellular neural networks (SCNNs) for improving noisy satellite imagery performance


    Beteiligte:


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    334864 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Satellite Image Small Target Application Based on Deep Segmented Residual Neural Network

    Wei, Zikang / Liu, Yunqing | British Library Conference Proceedings | 2020



    Noisy satellite pursuit-evasion

    MERZ, A. | AIAA | 1987