In this paper, we present a big-data self organizing network (Bi-SON) framework aiming to optimize energy efficiency of ultra-dense small cells. Although small cell can enhance the capacity of cellular mobile networks, ultra-dense small cells suffer from severe interference and poor energy efficiency. The self organizing network (SON) can automatically manage and optimize the system performance. However, current SON-enable mechanisms mostly focus on indoor femtocells. Our proposed Bi-SON suggests a data flow framework from data collection, analysis and optimization to reconfiguration. We adopt the statistics analysis approach to determine the optimal system parameters to improve the energy efficiency of a huge number of outdoor small cells. The Bi-SON mechanism periodically collects the management data of small cells, e.g. transmission power, reference signal receiving power and the number of users per cell. We find that simple sorting and filtering data analysis from huge number of small cells can already effectively find the almost optimal solution. Our simulation results show that Bi-SON can improve throughput and energy efficiency by 50% and 135% respectively, compared to the scheme without energy saving approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bi-SON: Big-Data Self Organizing Network for Energy Efficient Ultra-Dense Small Cells


    Beteiligte:
    Wang, Li-Chun (Autor:in) / Cheng, Shao-Hung (Autor:in) / Tsai, Ang-Hsun (Autor:in)


    Erscheinungsdatum :

    01.09.2016


    Format / Umfang :

    902889 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Energy Efficient Coordinated Self-Backhauling for Ultra-Dense 5G Networks

    Prasad, Athul / Uusitalo, Mikko A. / Maeder, Andreas | IEEE | 2017


    DRL-based Multi-UAV trajectory optimization for ultra-dense small cells

    Igbafe Orikumhi / Jungsook Bae / Hyunwoo Park et al. | DOAJ | 2023

    Freier Zugriff

    Self-organizing network measurement infrastructure

    Yunchun, L. / Wei, L. / Depei, Q. | British Library Online Contents | 2003


    Self-organizing Function Localization Neural Network

    Sasakawa, T. / Hu, J. / Hirasawa, K. | British Library Online Contents | 2005


    Wireless Backhauling for Energy Harvesting Ultra-Dense Networks

    Rostami, Soheil / Heiska, Kari / Puchko, Oleksandr et al. | IEEE | 2018