This paper presents vision-based landing guidance of multi-copter Unmanned Aerial Vehicle (UAV) using reinforcement learning. In this approach, the guidance method is not designed or proposed by a human, but deployed by a neural network trained in simulated environments; which contains a quad-copter UAV model with Proportional-Integral-Derivative (PID) Controller, ground looking camera model that gives pixel deviation of targeting landing location from the center of an image frame, and laser rangefinder that gives altitude above ground level. Since we aimed for various types of multi-copter UAVs to track targeting ground location, reinforcement learning method has been used to generate proper roll and pitch attitude commands in multiple situations. Series of flight experiments show that a multi-copter UAV equipped with a proper attitude controller and trained artificial intelligence pilot can guide a multi-copter UAV to a ground target position.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning


    Beteiligte:
    Lee, Seongheon (Autor:in) / Shim, Taemin (Autor:in) / Kim, Sungjoong (Autor:in) / Park, Junwoo (Autor:in) / Hong, Kyungwoo (Autor:in) / Bang, Hyochoong (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    2533635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    multi-copter type unmanned aerial vehicle

    RYUN KYUNG KIM / KYUNG WAN KO | Europäisches Patentamt | 2021

    Freier Zugriff

    multi-copter type unmanned aerial vehicle

    Europäisches Patentamt | 2021

    Freier Zugriff

    multi-copter type unmanned aerial vehicle using engine

    KO KYUNG WAN | Europäisches Patentamt | 2020

    Freier Zugriff


    Vision-based autonomous landing for rotorcraft unmanned aerial vehicle

    Bu, Chaoyan / Ai, Yunfeng / Du, Huajun | IEEE | 2016