We consider the downlink multi-user multi-cell massive MIMO systems, assuming that the number of antennas at base station (BS) and the number of users are large. Our system model accounts for channel estimation, pilot contamination, and uniformly random user location distribution. We derive the approximation of area spectral efficiency (ASE) with regularized zero-forcing (RZF) precoding technique which are proven to be accurate via simulation results. With a realistic power consumption model considering not only transmit power but also the fundamental power for operating the circuit at transmitter and receiver, we analyze the performance of area energy efficiency (AEE). Finally, based on the proposed power consumption model, we determine the optimal number of antennas at BS aimed at maximizing AEE when transmit power is given.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Area Spectral Efficiency and Energy Efficiency Analysis in Downlink Massive MIMO Systems


    Beteiligte:
    Xin, Yuanxue (Autor:in) / Wang, Dongming (Autor:in) / Li, Jiamin (Autor:in) / Zhu, Huilin (Autor:in) / Wang, Jiangzhou (Autor:in) / You, Xiaohu (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    183047 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Field Trials on Spectral Efficiency Improvement in Massive MIMO Systems

    Wang, Jian / Jin, Aixiang / Shi, Dai et al. | IEEE | 2018


    Analysis of Area Spectral Efficiency in D2D Underlaid Downlink Cellular Networks

    Zhang, Youwen / Qiu, Ling / Chen, Guangji et al. | IEEE | 2018


    Energy Efficiency Optimizations of Massive MIMO Systems with Linear Receivers

    Xue, Guan / Li, Lihua / Lu, Guangyan et al. | IEEE | 2017


    Effect of Antenna Distribution on Spectral and Energy Efficiency of Cell-Free Massive MIMO

    Ito, Masaaki / Kanno, Issei / Ohseki, Takeo et al. | IEEE | 2021