Wireless traffic prediction is a fundamental enabler to proactive network optimisation in 5G and beyond. Forecasting extreme demand spikes and troughs is essential to avoiding outages and improving energy efficiency. However, current forecasting methods predominantly focus on overall forecast performance and/or do not offer probabilistic uncertainty quantification. Here, we design a feature embedding (FE) kernel for a Gaussian Process (GP) model to forecast traffic demand. The FE kernel enables us to trade-off overall forecast accuracy against peak-trough accuracy. Using real 4G base station data, we compare its performance against both conventional GPs, ARIMA models, as well as demonstrate the uncertainty quantification output. The advantage over neural network (e.g. CNN, LSTM) models is that the probabilistic forecast uncertainty can directly feed into decision processes in optimisation modules.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecasting Wireless Demand with Extreme Values using Feature Embedding in Gaussian Processes


    Beteiligte:
    Sun, Schyler C. (Autor:in) / Guo, Weisi (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    4351273 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Markov decision processes with unknown state feature values for safe exploration using Gaussian processes

    Budd, M / Lacerda, B / Duckworth, P et al. | BASE | 2020

    Freier Zugriff


    Gaussian Processes for Short-Term Traffic Volume Forecasting

    Xie, Yuanchang / Zhao, Kaiguang / Sun, Ying et al. | Transportation Research Record | 2010



    Light Curve Completion and Forecasting Using Fast and Scalable Gaussian Processes (MuyGPs)

    Goumiri, Imene | British Library Conference Proceedings | 2022