This paper considers a last-mile distribution system consisting of a fleet of electric vehicles, where each vehicle has the option to be equipped with a single drone. We formulate the system as a mixed-fleet electric vehicle-drone routing problem, with the objective of minimizing the total cost of the system. Subsequently, an adaptive memetic algorithm with a Q-learning-based operator selection mechanism is employed to solve the model. A set of extensive numerical experiments show that the proposed algorithm performs better than the state-of-the-art approaches. Further, we also demonstrate the importance of economies of scale in drone-aided routing problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Electric Vehicle-Drone Routing Problem with Optional Drone Availability


    Beteiligte:
    Windras Mara, Setyo Tri (Autor:in) / Sarker, Ruhul (Autor:in) / Essam, Daryl (Autor:in) / Elsayed, Saber (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    890305 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DRONE-BASED OFFROAD VEHICLE ROUTING

    ARAUJO WILLIAM C / PATENAUDE RUSSELL A / POPIEL LUKE J | Europäisches Patentamt | 2024

    Freier Zugriff

    An Adaptive Memetic Algorithm for a Cost-Optimal Electric Vehicle-Drone Routing Problem

    Windras Mara, Setyo Tri / Sarker, Ruhul / Essam, Daryl et al. | IEEE | 2024


    The Vehicle Routing Problem with Drone for the Minimum CO, Emissions

    Peng, Xinying / Sun, Deguo / Meng, Zhiyi | TIBKAT | 2021


    Relief Mapping Assessment using Two-Echelon Vehicle Routing Problem with Drone

    Perwira Redi, A. A. N. / Liperda, Rahmad Inca / Sopha, Bertha Maya et al. | IEEE | 2020


    Cooperated Truck-Drone Routing With Drone Energy Consumption and Time Windows

    Liu, Yao / Shi, Jianmai / Luo, Zhihao et al. | IEEE | 2024