Building detection from very high resolution satellite imagery is an important task for land planners. However, manually locating buildings from these images is a difficult and time consuming process. Therefore, researchers focused on building detection using automated image processing and computer vision techniques. The main problems here are as follows. Buildings have diverse characteristics and their appearance (illumination, viewing angle, etc.) is uncontrolled. On the other hand, buildings often have similar cues like parallel edges and roof corners that can be merged. In this study, we propose an automated approach for building detection based on Gabor filters and spatial voting. We extract features (representing buildings) using Gabor filter responses. Using these features, we form a spatial voting matrix to detect buildings. We tested our algorithm on very high resolution grayscale Ikonos satellite images and obtained promising results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Building detection using local Gabor features in very high resolution satellite images


    Beteiligte:
    Sirmacek, Beril (Autor:in) / Unsalan, Cem (Autor:in)


    Erscheinungsdatum :

    01.06.2009


    Format / Umfang :

    1318617 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-resolution feature extraction from Gabor filtered images

    Rizki, M.M. / Tamburino, L.A. / Zmuda, M.A. | IEEE | 1993


    Local and global Gabor features for object recognition

    Kamarainen, J. K. / Kyrki, V. / Kälviäinen, H. | British Library Online Contents | 2007



    Hydrograhic Surveying Using High Resolution Satellite Images

    Philipson, Petra / Andersson, Frida / Deutsche Hydrographische Gesellschaft e.V. | HENRY – Bundesanstalt für Wasserbau (BAW) | 2009

    Freier Zugriff