Gaussian mixture model (GMM) filters tackle the intricacies of nonlinear and multimodal systems by representing probability distributions as a weighted sum of Gaussian components. However, traditional GMM approaches often update component weights based on prior state estimates, which can lead to filter divergence and degeneracy. Therefore, in this work, weights based on posterior state estimates are used instead, which provide a more accurate and dynamic reflection of the system's state after receiving new measurement data. The posterior-based approach extends to GMM filters that update individual Gaussian components using linearization techniques, such as the extended Kalman filter and the Bayesian recursive update filter. In addition, a Jacobian-free version, using importance sampling, is proposed for sigma-point-based methods, such as the unscented Kalman filter and the cubature Kalman filter. Empirical results from a 2-D Avocado example and a cislunar orbit determination example show that updating weights using posterior estimates improves accuracy and consistency, while maintaining computational efficiency comparable to prior-based approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Updating Gaussian Mixture Weights Using Posterior Estimates


    Beteiligte:
    Durant, Dalton (Autor:in) / Popov, Andrey A. (Autor:in) / Zanetti, Renato (Autor:in)


    Erscheinungsdatum :

    01.08.2025


    Format / Umfang :

    2522170 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Approximating Posterior Cramér–Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models

    Zhang, Shuo / Chen, Defeng / Fu, Tuo et al. | IEEE | 2021

    Freier Zugriff

    Incorporating posterior estimates into AdaBoost

    Barinova, O. | British Library Online Contents | 2009