Mobile edge computing (MEC) is an efficient method to tackle computationally intensive tasks for mobile devices (MDs). However, current studies about MEC do not consider that different MDs have different preferences for delay and energy consumption. Thus, we propose a MD preference-based MEC computing model addressing three optimization goals: delay preference, energy preference, and their balance, tailored to diverse MD preference. This optimization problem is formulated as a mixed integer non-linear programming (MINLP) task with four optimization variables: offloading decisions, channel allocation, power allocation, and resource allocation. Additionally, we propose a novel genetic artificial fish swarm cooperative optimization algorithm (GAFSCOA) to solve this problem, which integrates genetic algorithm (GA) and artificial fish swarm algorithm (AFSA), respectively. Numerical results show our proposed model can achieve different optimization goals according to MDs’ preferences. Compared with GA and AFSA, our proposed GAFSCOA demonstrates 30.71% faster convergence speed and 46.09% better optimization results. Furthermore, in comparison with other baseline algorithms, our algorithm yields superior optimization results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Optimization in MEC Incorporating MD Preference: A Hybrid GA and AFSA Scheme


    Beteiligte:
    Dong, Yunan (Autor:in) / Pei, Jianhua (Autor:in) / Wu, Kun (Autor:in) / Dong, Yuhan (Autor:in) / Zhang, Xiao-Ping (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    575181 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An AFSA-Inspired Vector Energy Routing Algorithm Based on Fluid Mechanics

    Li, Ming / Xu*, Jiang | BASE | 2020

    Freier Zugriff

    UAV Photogrammetry and AFSA-Elman Neural Network in Slopes Displacement Monitoring and Forecasting

    Wang, Shuhong / Zhang, Zishan / Ren, Yipeng et al. | Springer Verlag | 2020



    A Multi-objective Optimization Genetic Algorithm Incorporating Preference Information

    Shen, X.-n. / Guo, Y. / Chen, Q.-w. et al. | British Library Online Contents | 2007