This paper presents a method to learn the Cartesian velocity of objects using an object detection network on automotive radar data. The proposed method is self-supervised in terms of generating its own training signal for the velocities. Labels are only required for single-frame, oriented bounding boxes (OBBs). Labels for the Cartesian velocities or contiguous sequences, which are expensive to obtain, are not required. The general idea is to pre-train an object detection network without velocities using single-frame OBB labels, and then exploit the network’s OBB predictions on unlabelled data for velocity training. In detail, the network’s OBB predictions of the unlabelled frames are updated to the timestamp of a labelled frame using the predicted velocities and the distances between the updated OBBs of the unlabelled frame and the OBB predictions of the labelled frame are used to generate a self-supervised training signal for the velocities. The detection network architecture is extended by a module to account for the temporal relation of multiple scans and a module to represent the radars’ radial velocity measurements explicitly. A twostep approach of first training only OBB detection, followed by training OBB detection and velocities is used. Further, a pre-training with pseudo-labels generated from radar radial velocity measurements bootstraps the self-supervised method of this paper. Experiments on the publicly available nuScenes dataset show that the proposed method almost reaches the velocity estimation performance of a fully supervised training, but does not require expensive velocity labels. Furthermore, we outperform a baseline method which uses only radial velocity measurements as labels.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Self-Supervised Velocity Estimation for Automotive Radar Object Detection Networks


    Beteiligte:
    Niederlohner, Daniel (Autor:in) / Ulrich, Michael (Autor:in) / Braun, Sascha (Autor:in) / Kohler, Daniel (Autor:in) / Faion, Florian (Autor:in) / Glaser, Claudius (Autor:in) / Treptow, Andre (Autor:in) / Blume, Holger (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    2625239 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Side object tracking using automotive radar with lateral velocity estimation

    Fitzek, Frerk / Zoeke, Dominik / Aeberhard, Michael et al. | Tema Archiv | 2010



    Multi-View Radar Autoencoder for Self-Supervised Automotive Radar Representation Learning

    Zhu, Haoran / He, Haoze / Choromanska, Anna et al. | IEEE | 2024


    Object boundary detection for automotive radar imaging

    STAINVAS OLSHANSKY INNA / BILIK IGAL / BIALER ODED | Europäisches Patentamt | 2019

    Freier Zugriff

    Detection of a target object utilizing automotive radar

    CONG SHAN / YAN BEI | Europäisches Patentamt | 2018

    Freier Zugriff